濟南彈簧[Huang]圓柱彈簧的設計計算
來[Lai]源:濟南彈簧(Huang)廠 作者[Zhe]:admin 發布時間:2018-06-21 11:18:17 點擊(Ji)量:613
(一)幾何參數[Shu]計算
普通圓柱螺旋[Xuan]彈簧的主要幾何[He]尺寸有:外徑D、中徑D2、内徑D1、節距[Ju]p、螺旋升角α及彈 簧絲直(Zhi)徑[Jing]d。由下圖圓柱螺[Luo]旋彈簧的幾何尺寸[Cun]參數圖可知[Zhi],它們的關系(Xi)為:
式中彈簧的(De)螺旋升角α,對圓柱螺(Luo)旋(Xuan)壓縮彈簧一般應在5°~9°範圍内選取。彈簧(Huang)的旋向可以是右旋或(Huo)左旋,但無特殊(Shu)要(Yao)求時,一般都用右旋[Xuan]。
圓(Yuan)柱螺旋彈簧的幾[Ji]何尺寸[Cun]參數(Shu)
普通圓[Yuan]柱螺[Luo]旋壓縮及拉伸彈簧的結構尺寸計算公式見[Jian]表(普通圓柱(Zhu)螺旋壓縮及拉伸[Shen]彈簧的結構尺寸(mm)計[Ji]算公式)。
普通圓[Yuan]柱螺旋壓(Ya)縮及拉(La)伸彈簧的結構尺(Chi)寸(mm)計算公(Gong)式
參數名(Ming)稱及(Ji)代号 | 計算公式 | 備注 |
壓縮(Suo)彈簧 | 拉伸彈簧 |
中 徑[Jing]D2 | D2=Cd | 按普(Pu)通圓柱螺旋彈簧尺寸系列表取标準(Zhun)值 |
内 徑D1 | D1=D2-d | |
外[Wai] 徑(Jing)D | D=D2+d | |
旋繞比C | C=D2/d | |
壓縮彈[Dan]簧長細比b | b=H0/D2 | | b在1~5.3的範圍内選取 |
自由高度或長度H0 | H0≈pn+(1.5~2)d (兩端(Duan)并緊,磨平) H0≈pn+(3~3.5)d (兩端并緊,不磨平) | H0=nd+鈎環軸向[Xiang]長度 | |
工作高度或長度 H1,H2,…,Hn | Hn=H0-λn | Hn=H0+λn | λn--工作變形[Xing]量 |
有效圈數n | 根據要求變形[Xing]量按式(16-11)計算 | n≥2 |
總圈(Quan)數n1 | n1=n+(2~2.5)(冷(Leng)卷) n1=n+(1.5~2) (YII型(Xing)熱卷(Juan)) | n1=n | 拉伸(Shen)彈簧n1尾[Wei]數為1/4,1/2,3/4整圈。推薦用[Yong]1/2圈 |
節 距p | p=(0.28~0.5)D2 | p=d | |
軸向間距δ | δ=p-d | | |
展開長度L | L=πD2n1/cosα | L≈πD2n+鈎環展開(Kai)長度 | |
螺(Luo)旋角α | α=arctg(p/πD2) | 對壓縮螺旋彈簧,推薦 α=5°~9° |
((二)特性[Xing]曲線
彈簧應具有經[Jing]久不變的彈(Dan)性,且不允許(Xu)産生永久[Jiu]變形。因此在設計彈簧時,務必使其工作應力在彈性[Xing]極限範[Fan]圍内。在這個範圍[Wei]内工作[Zuo]的壓[Ya]縮(Suo)彈 簧,當承受(Shou)軸向[Xiang]載荷(He)P時,彈簧将(Jiang)産生相應的彈性變[Bian] 形,如[Ru]右圖a所示。為了[Le]表示彈簧的載(Zai)荷與變形的關(Guan)系,取縱坐标表示彈(Dan)簧承受的(De)載荷,橫坐标表[Biao]示彈簧的變形,通常載荷和變(Bian)形成直線關系[Xi](右圖b)。 這種表示[Shi]載(Zai)荷與變形的[De]關系的曲線稱為彈簧的[De]特性曲線。對拉伸彈[Dan]簧,如圖<圓柱螺[Luo]旋(Xuan)拉伸彈簧的(De)特性曲線> 所(Suo)示,圖b為無預(Yu)應力的拉[La]伸彈簧的特性曲線;圖c為有預應力的拉伸彈簧的特性曲線。圓柱螺旋拉伸彈簧的特性[Xing]曲(Qu)線>
右圖a中[Zhong]的H0是[Shi]壓縮彈簧(Huang)在沒有[You]承受(Shou)外力時的自由長度。彈簧在安裝[Zhuang]時,通常預加一(Yi)個[Ge]壓力 Fmin,使它可(Ke)靠地穩定在安裝位置上。Fmin稱為彈簧的(De)最小載(Zai)荷(安裝載荷)。在它[Ta]的作用[Yong]下,彈簧的長度 被壓縮到H1其壓縮變(Bian)形量[Liang]為λmin。Fmax為彈簧承受的最大工[Gong]作載荷[He]。在Fmax作用下,彈簧長度減(Jian)到H2, 其壓縮[Suo]變形(Xing)量增到[Dao]λmax。λmax與λmin的差即為彈簧的 工作[Zuo]行程h,h=λmax-λmin。 Flim為彈簧的極[Ji]限載荷(He)。在該力的作(Zuo)用下,彈簧絲[Si]内的應力達到了材(Cai)料的彈[Dan]性極限。與Flim對應的彈[Dan]簧長度為H3,壓縮變形量為[Wei]λlim。
圓柱螺旋壓縮彈簧的特性[Xing]曲線
等節距的圓柱螺旋[Xuan]壓[Ya]縮彈簧的特性[Xing]曲線(Xian)為一直線,亦即
壓縮[Suo]彈簧的最小工作載[Zai]荷通常[Chang]取為 Fmin=(0.1~0.5)Fmax;但對有預應力的拉伸彈簧(圖[Tu]<圓柱螺旋拉伸彈(Dan)簧的特性曲線>), Fmin>F0,F0為使隻有預(Yu)應力的拉伸[Shen]彈簧開始變形時所需的初拉(La)力。彈(Dan)簧的最大工作載荷Fmax,由彈[Dan]簧在[Zai]機構中的工作條件決定。但不[Bu]應到(Dao)達它的極限載荷(He),通常應(Ying)保持Fmax≤0.8Flim。圓柱(Zhu)螺旋拉伸彈簧的特性曲線>
濟南彈[Dan]簧廠的特[Te]性曲線應繪在彈簧(Huang)工作圖中,作為檢驗[Yan]和試(Shi)驗時(Shi)的依據之一。此外,在設計彈簧時[Shi],利用特性曲線分析受載與變形的關系也較方便。
圓柱螺[Luo]旋拉伸彈簧的特性曲線